SEEMOUS 2013 PROBLEMS AND SOLUTIONS

Problem 1

Find all continuous functions $f:[1,8] \rightarrow R$, such that

$$
\int_{1}^{2} f^{2}\left(t^{3}\right) d t+2 \int_{1}^{2} f\left(t^{3}\right) d t=\frac{2}{3} \int_{1}^{8} f(t) d t-\int_{1}^{2}\left(t^{2}-1\right)^{2} d t .
$$

Solution. Using the substitution $t=u^{3}$ we get

$$
\frac{2}{3} \int_{1}^{8} f(t) d t=2 \int_{1}^{2} u^{2} f\left(u^{3}\right) d u=2 \int_{1}^{2} t^{2} f\left(t^{3}\right) d u
$$

Hence, by the assumptions,

$$
\int_{1}^{2}\left(f^{2}\left(t^{3}\right)+\left(t^{2}-1\right)^{2}+2 f\left(t^{3}\right)-2 t^{2} f\left(t^{3}\right)\right) d t=0
$$

Since $f^{2}\left(t^{3}\right)+\left(t^{2}-1\right)^{2}+2 f\left(t^{3}\right)-2 t^{2} f\left(t^{3}\right)=\left(f\left(t^{3}\right)\right)^{2}+\left(1-t^{2}\right)^{2}+2\left(1-t^{2}\right) f\left(t^{3}\right)=\left(f\left(t^{3}\right)+1-t^{2}\right)^{2} \geq$ 0 , we get

$$
\int_{1}^{2}\left(f\left(t^{3}\right)+1-t^{2}\right)^{2} d t=0
$$

The continuity of f implies that $f\left(t^{3}\right)=t^{2}-1,1 \leq t \leq 2$, thus, $f(x)=x^{2 / 3}-1,1 \leq x \leq 8$.
Remark. If the continuity assumption for f is replaced by Riemann integrability then infinitely many f 's would satisfy the given equality. For example if C is any closed nowhere dense and of measure zero subset of $[1,8]$ (for example a finite set or an appropriate Cantor type set) then any function f such that $f(x)=x^{2 / 3}-1$ for every $x \in[1,8] \backslash C$ satisfies the conditions.

Problem 2

Let $M, N \in M_{2}(\mathbb{C})$ be two nonzero matrices such that

$$
M^{2}=N^{2}=0_{2} \text { and } M N+N M=I_{2}
$$

where 0_{2} is the 2×2 zero matrix and I_{2} the 2×2 unit matrix. Prove that there is an invertible matrix $A \in M_{2}(\mathbb{C})$ such that

$$
M=A\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) A^{-1} \text { and } N=A\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) A^{-1} .
$$

First solution. Consider $f, g: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by $f(x)=M x$ and $g(x)=N x$.
We have $f^{2}=g^{2}=0$ and $f g+g f=\mathrm{id}_{\mathbb{C}^{2}}$; composing the last relation (to the left, for instance) with $f g$ we find that $(f g)^{2}=f g$, so $f g$ is a projection of \mathbb{C}^{2}.
If $f g$ were zero, then $g f=\operatorname{id}_{\mathbb{C}^{2}}$, so f and g would be invertible, thus contradicting $f^{2}=0$.
Therefore, $f g$ is nonzero. Let $u \in \operatorname{Im}(f g) \backslash\{0\}$ and $w \in \mathbb{C}^{2}$ such that $u=f g(w)$. We obtain $f g(u)=(f g)^{2}(w)=f g(w)=u$. Let $v=g(u)$. The vector v is nonzero, because otherwise we obtain $u=f(v)=0$.
Moreover, u and v are not collinear since $v=\lambda u$ with $\lambda \in \mathbb{C}$ implies $u=f(v)=f(\lambda u)=$ $\lambda f(u)=\lambda f^{2}(g(w))=0$, a contradiction.
Let us now consider the ordered basis \mathcal{B} of \mathbb{C}^{2} consisting of u and v.
We have $f(u)=f^{2}(g(u))=0, f(v)=f(g(u))=u, g(u)=v$ and $g(v)=g^{2}(u)=0$.
Therefore, the matrices of f and g with respect to \mathcal{B} are $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, respectively.
We take A to be the change of base matrix from the standard basis of \mathbb{C}^{2} to \mathcal{B} and we are done.

Second solution. Let us denote $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ by E_{12} and $\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)$ by E_{21}. Since $M^{2}=N^{2}=$ 0_{2} and $M, N \neq 0_{2}$, the minimal polynomials of both M and N are equal to x^{2}. Therefore, there are invertible matrices $B, C \in \mathcal{M}_{2}(\mathbb{C})$ such that $M=B E_{12} B^{-1}$ and $N=C E_{21} C^{-1}$.
Note that B and C are not uniquely determined. If $B_{1} E_{12} B_{1}^{-1}=B_{2} E_{12} B_{2}^{-1}$, then $\left(B_{1}^{-1} B_{2}\right) E_{12}=$ $E_{12}\left(B_{1}^{-1} B_{2}\right)$; putting $B_{1}^{-1} B_{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the last relation is equivalent to $\left(\begin{array}{ll}0 & a \\ 0 & c\end{array}\right)=$ $\left(\begin{array}{cc}c & d \\ 0 & 0\end{array}\right)$. Consequently, $B_{1} E_{12} B_{1}^{-1}=B_{2} E_{12} B_{2}^{-1}$ if and only if there exist $a \in \mathbb{C}-\{0\}$ and $b \in \mathbb{C}$ such that

$$
B_{2}=B_{1}\left(\begin{array}{ll}
a & b \tag{*}\\
0 & a
\end{array}\right) .
$$

Similarly, $C_{1} E_{21} C_{1}^{-1}=C_{2} E_{21} C_{2}^{-1}$ if and only if there exist $\alpha \in \mathbb{C}-\{0\}$ and $\beta \in \mathbb{C}$ such that

$$
C_{2}=C_{1}\left(\begin{array}{cc}
\alpha & 0 \tag{**}\\
\beta & \alpha
\end{array}\right)
$$

Now, $M N+N M=I_{2}, M=B E_{12} B^{-1}$ and $N=C E_{21} C^{-1}$ give

$$
B E_{12} B^{-1} C E_{21} C^{-1}+C E_{21} C^{-1} B E_{12} B^{-1}=I_{2},
$$

or

$$
E_{12} B^{-1} C E_{21} C^{-1} B+B^{-1} C E_{21} C^{-1} B E_{12}=I_{2} .
$$

If $B^{-1} C=\left(\begin{array}{cc}x & y \\ z & t\end{array}\right)$, the previous relation means

$$
\left(\begin{array}{cc}
z & t \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
t & -y
\end{array}\right)+\left(\begin{array}{cc}
y & 0 \\
t & 0
\end{array}\right)\left(\begin{array}{cc}
0 & t \\
0 & -z
\end{array}\right)=(x t-y z) I_{2} \neq 0_{2} .
$$

After computations we find this to be equivalent to $x t-y z=t^{2} \neq 0$. Consequently, there are $y, z \in \mathbb{C}$ and $t \in \mathbb{C}-\{0\}$ such that

$$
C=B\left(\begin{array}{cc}
t+\frac{y z}{t} & y \\
z & t
\end{array}\right) \cdot(* * *)
$$

According to $(*)$ and $(* *)$, our problem is equivalent to finding $a, \alpha \in \mathbb{C}-\{0\}$ and $b, \beta \in \mathbb{C}$ such that $C\left(\begin{array}{cc}\alpha & 0 \\ \beta & \alpha\end{array}\right)=B\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)$. Taking relation $(* * *)$ into account, we need to find $a, \alpha \in \mathbb{C}-\{0\}$ and $b, \beta \in \mathbb{C}$ such that

$$
B\left(\begin{array}{cc}
t+\frac{y z}{t} & y \\
z & t
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
\beta & \alpha
\end{array}\right)=B\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right)
$$

or, B being invertible,

$$
\left(\begin{array}{cc}
t+\frac{y z}{t} & y \\
z & t
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
\beta & \alpha
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) .
$$

This means $\left\{\begin{array}{l}\alpha t+\alpha \frac{y z}{t}+\beta y=a \\ \alpha y=b \\ \alpha z+\beta t=0 \\ \alpha t=a\end{array}\right.$,
and these conditions are equivalent to $\left\{\begin{array}{l}\alpha y=b \\ \alpha z=-\beta t \\ \alpha t=a\end{array}\right.$.
It is now enough to choose $\alpha=1, a=t, b=y$ and $\beta=-\frac{z}{t}$.

Third Solution. Let f, g be as in the first solution. Since $f^{2}=0$ there exists a nonzero $v_{1} \in \operatorname{Ker} f$ so $f\left(v_{1}\right)=0$ and setting $v_{2}=g\left(v_{1}\right)$ we get

$$
f\left(v_{2}\right)=(f g+g f)\left(v_{1}\right)=v_{1} \neq 0
$$

by the assumptions (and so $v_{2} \neq 0$). Also

$$
g\left(v_{2}\right)=g^{2}\left(v_{1}\right)=0
$$

and so to complete the proof it suffices to show that v_{1} and v_{2} are linearly independent, because then the matrices of f, g with respect to the ordered basis $\left(v_{1}, v_{2}\right)$ would be E_{12} and E_{21} respectively, according to the above relations. But if $v_{2}=\lambda v_{1}$ then $0=g\left(v_{2}\right)=\lambda g\left(v_{1}\right)=\lambda v_{2}$ so since $v_{2} \neq 0, \lambda$ must be 0 which gives $v_{2}=0 v_{1}=0$ contradiction. This completes the proof.

Remark. A nonelementary solution of this problem can be given by observing that the conditions on M, N imply that the correspondence $I_{2} \rightarrow I_{2}, M \rightarrow E_{12}$ and $N \rightarrow E_{21}$ extends to an isomorphism between the subalgebras of $\mathcal{M}_{2}(\mathbb{C})$ generated by I_{2}, M, N and I_{2}, E_{12}, E_{21} respectively, and then one can apply Noether-Skolem Theorem to show that this isomorphism is actually conjugation by an $A \in G l_{2}(\mathbb{C})$ etc.

Problem 3

Find the maximum value of

$$
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2}|f(x)| \frac{1}{\sqrt{x}} d x
$$

over all continuously differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=0$ and

$$
\begin{equation*}
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x \leq 1 \tag{*}
\end{equation*}
$$

Solution. For $x \in[0,1]$ let

$$
g(x)=\int_{0}^{x}\left|f^{\prime}(t)\right|^{2} d t .
$$

Then for $x \in[0,1]$ the Cauchy-Schwarz inequality gives

$$
|f(x)| \leq \int_{0}^{x}\left|f^{\prime}(t)\right| d t \leq\left(\int_{0}^{x}\left|f^{\prime}(t)\right|^{2} d t\right)^{1 / 2} \sqrt{x}=\sqrt{x} g(x)^{1 / 2}
$$

Thus

$$
\begin{aligned}
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2}|f(x)| \frac{1}{\sqrt{x}} d x & \leq \int_{0}^{1} g(x)^{1 / 2} g^{\prime}(x) d x=\frac{2}{3}\left[g(1)^{3 / 2}-g(0)^{3 / 2}\right] \\
& =\frac{2}{3}\left(\int_{0}^{1}\left|f^{\prime}(t)\right|^{2} d t\right)^{3 / 2} \leq \frac{2}{3}
\end{aligned}
$$

by $(*)$. The maximum is achieved by the function $f(x)=x$.
Remark. If the condition (*) is replaced by $\int_{0}^{1}\left|f^{\prime}(x)\right|^{p} d x \leq 1$ with $0<p<2$ fixed, then the given expression would have supremum equal to $+\infty$, as it can be seen by considering continuously differentiable functions that approximate the functions $f_{M}(x)=M x$ for $0 \leq x \leq$ $\frac{1}{M^{p}}$ and $\frac{1}{M^{p-1}}$ for $\frac{1}{M^{p}}<x \leq 1$, where M can be an arbitrary large positive real number.

Problem 4

Let $A \in M_{2}(Q)$ such that there is $n \in N, n \neq 0$, with $A^{n}=-I_{2}$. Prove that either $A^{2}=-I_{2}$ or $A^{3}=-I_{2}$.

First Solution. Let $f_{A}(x)=\operatorname{det}\left(A-x I_{2}\right)=x^{2}-s x+p \in \mathbb{Q}[x]$ be the characteristic polynomial of A and let λ_{1}, λ_{2} be its roots, also known as the eigenvalues of matrix A. We have that $\lambda_{1}+\lambda_{2}=s \in \mathbb{Q}$ and $\lambda_{1} \lambda_{2}=p \in \mathbb{Q}$. We know, based on Cayley-Hamilton theorem, that the matrix A satisfies the relation $A^{2}-s A+p I_{2}=0_{2}$. For any eigenvalue $\lambda \in \mathbb{C}$ there is an eigenvector $X \neq 0$, such that $A X=\lambda X$. By induction we have that $A^{n} X=\lambda^{n} X$ and it follows that $\lambda^{n}=-1$. Thus, the eigenvalues of A satisfy the equalities

$$
\begin{equation*}
\lambda_{1}^{n}=\lambda_{2}^{n}=-1 \tag{*}
\end{equation*}
$$

Is $\lambda_{1} \in \mathbb{R}$ then we also have that $\lambda_{2} \in \mathbb{R}$ and from (*) we get that $\lambda_{1}=\lambda_{2}=-1$ (and note that n must be odd) so A satisfies the equation $\left(A+I_{2}\right)^{2}=A^{2}+2 A+I_{2}=0_{2}$ and it follows that $-I_{2}=A^{n}=\left(A+I_{2}-I_{2}\right)^{n}=n\left(A+I_{2}\right)-I_{2}$ which gives $A=-I_{2}$ and hence $A^{3}=-I_{2}$.

If $\lambda_{1} \in \mathbb{C} \backslash \mathbb{R}$ then $\lambda_{2}=\overline{\lambda_{1}} \in \mathbb{C} \backslash \mathbb{R}$ and since $\lambda_{1}^{n}=-1$ we get that $\left|\lambda_{1,2}\right|=1$ and this implies that $\lambda_{1,2}=\cos t \pm i \sin t$. Now we have the equalities $\lambda_{1}+\lambda_{2}=2 \cos t=s \in \mathbb{Q}$ and $\lambda_{1}^{n}=-1$ implies that $\cos n t+i \sin n t=-1$ which in turn implies that $\cos n t=-1$. Using the equality $\cos (n+1) t+\cos (n-1) t=2 \cos t \cos n t$ we get that there is a polynomial $P_{n}=x^{n}+\cdots$ of degree n with integer coefficients such that $2 \cos n t=P_{n}(2 \cos t)$. Set $x=2 \cos t$ and observe that we have $P_{n}(x)=-2$ so $x=2 \cos t$ is a rational root of an equation of the form $x^{n}+\cdots=0$. However, the rational roots of this equation are integers, so $x \in \mathbb{Z}$ and since $|x| \leq 2$ we get that $2 \cos t=-2,-1,0,1,2$.

When $2 \cos t= \pm 2$ then $\lambda_{1,2}$ are real numbers (note that in this case $\lambda_{1}=\lambda_{2}=1$ or $\lambda_{1}=\lambda_{2}=-1$) and this case was discussed above.

When $2 \cos t=0$ we get that $A^{2}+I_{2}=0_{2}$ so $A^{2}=-I_{2}$.
When $2 \cos t=1$ we get that $A^{2}-A+I_{2}=0_{2}$ which implies that $\left(A+I_{2}\right)\left(A^{2}-A+I_{2}\right)=0_{2}$ so $A^{3}=-I_{2}$.

When $2 \cos t=-1$ we get that $A^{2}+A+I_{2}=0_{2}$ and this implies that $\left(A-I_{2}\right)\left(A^{2}+A+I_{2}\right)=0_{2}$ so $A^{3}=I_{2}$. It follows that $A^{n} \in\left\{I_{2}, A, A^{2}\right\}$. However, $A^{n}=-I_{2}$ and this implies that either $A=-I_{2}$ or $A^{2}=-I_{2}$ both of which contradict the equality $A^{3}=I_{2}$. This completes the proof.

Remark. The polynomials P_{n} used in the above proof are related to the Chebyshev polynomials, $T_{n}(x)=\cos (n \arccos x)$. One could also get the conclusion that $2 \cos t$ is an integer by considering the sequence $x_{m}=2 \cos \left(2^{m} t\right)$ and noticing that since $x_{m+1}=x_{m}^{2}-2$, if x_{0} were a noninteger rational $\frac{a}{b}(b>1)$ in lowest terms then the denominator of x_{m} in lowest terms would be $b^{2^{m}}$ and this contradicts the fact that x_{m} must be periodic since t is a rational multiple of π.

Second Solution. Let $m_{A}(x)$ be the minimal polynomial of A. Since $A^{2 n}-I_{2}=\left(A^{n}+\right.$ $\left.I_{2}\right)\left(A^{n}-I_{2}\right)=0_{2}, m_{A}(x)$ must be a divisor of $x^{2 n}-1$ which has no multiple roots. It is well known that the monic irreducible over \mathbb{Q} factors of $x^{2 n}-1$ are exactly the cyclotomic polynomials $\Phi_{d}(x)$ where d divides $2 n$. Hence the irreducible over \mathbb{Q} factors of $m_{A}(x)$ must be cyclotomic polynomials and since the degree of $m_{A}(x)$ is at most 2 we conclude that $m_{A}(x)$ itself must be a cyclotomic polynomial, say $\Phi_{d}(x)$ for some positive integer d with $\phi(d)=1$ or 2 (where ϕ is the Euler totient function), $\phi(d)$ being the degree of $\Phi_{d}(x)$. But this implies that $d \in\{1,2,3,4,6\}$ and since A, A^{3} cannot be equal to I_{2} we get that $m_{A}(x) \in\left\{x+1, x^{2}+1, x^{2}-x+1\right\}$ and this implies that either $A^{2}=-I_{2}$ or $A^{3}=-I_{2}$.

