
SEEMOUS 2013 PROBLEMS AND SOLUTIONS

Problem 1
Find all continuous functions f : [1; 8]! R, such thatZ 2

1
f2(t3)dt+ 2

Z 2

1
f(t3)dt =

2

3

Z 8

1
f(t)dt�

Z 2

1
(t2 � 1)2dt:

Solution. Using the substitution t = u3 we get

2

3

Z 8

1
f(t)dt = 2

Z 2

1
u2f(u3)du = 2

Z 2

1
t2f(t3)du:

Hence, by the assumptions,Z 2

1

�
f2(t3) + (t2 � 1)2 + 2f(t3)� 2t2f(t3)

�
dt = 0:

Since f2(t3)+(t2�1)2+2f(t3)�2t2f(t3) = (f(t3))2+(1�t2)2+2(1�t2)f(t3) =
�
f(t3) + 1� t2

�2 �
0, we get Z 2

1

�
f(t3) + 1� t2

�2
dt = 0:

The continuity of f implies that f(t3) = t2 � 1, 1 � t � 2, thus, f(x) = x2=3 � 1, 1 � x � 8.
Remark. If the continuity assumption for f is replaced by Riemann integrability then

in�nitely many f�s would satisfy the given equality. For example if C is any closed nowhere
dense and of measure zero subset of [1; 8] (for example a �nite set or an appropriate Cantor type
set) then any function f such that f(x) = x2=3�1 for every x 2 [1; 8]nC satis�es the conditions.

Problem 2
Let M;N 2M2(C) be two nonzero matrices such that

M2 = N2 = 02 and MN +NM = I2

where 02 is the 2� 2 zero matrix and I2 the 2� 2 unit matrix. Prove that there is an invertible
matrix A 2M2(C) such that

M = A

�
0 1
0 0

�
A�1 and N = A

�
0 0
1 0

�
A�1:

First solution. Consider f; g : C2 ! C2 given by f(x) =Mx and g(x) = Nx.
We have f2 = g2 = 0 and fg + gf = idC2 ; composing the last relation (to the left, for instance)
with fg we �nd that (fg)2 = fg, so fg is a projection of C2.
If fg were zero, then gf = idC2 , so f and g would be invertible, thus contradicting f

2 = 0.
Therefore, fg is nonzero. Let u 2 Im(fg) n f0g and w 2 C2 such that u = fg(w). We obtain
fg(u) = (fg)2(w) = fg(w) = u. Let v = g(u). The vector v is nonzero, because otherwise we
obtain u = f(v) = 0.
Moreover, u and v are not collinear since v = �u with � 2 C implies u = f(v) = f(�u) =
�f(u) = �f2(g(w)) = 0, a contradiction.
Let us now consider the ordered basis B of C2 consisting of u and v.
We have f(u) = f2(g(u)) = 0, f(v) = f(g(u)) = u, g(u) = v and g(v) = g2(u) = 0.

Therefore, the matrices of f and g with respect to B are
�
0 1
0 0

�
and

�
0 0
1 0

�
, respectively.

We take A to be the change of base matrix from the standard basis of C2 to B and we are
done. �
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Second solution. Let us denote
�
0 1
0 0

�
by E12 and

�
0 0
1 0

�
by E21. Since M2 = N2 =

02 and M;N 6= 02, the minimal polynomials of both M and N are equal to x2. Therefore, there
are invertible matrices B;C 2M2(C) such that M = BE12B

�1 and N = CE21C
�1.

Note that B and C are not uniquely determined. If B1E12B�11 = B2E12B
�1
2 , then (B�11 B2)E12 =

E12(B
�1
1 B2); putting B�11 B2 =

�
a b
c d

�
, the last relation is equivalent to

�
0 a
0 c

�
=�

c d
0 0

�
. Consequently, B1E12B�11 = B2E12B

�1
2 if and only if there exist a 2 C � f0g and

b 2 C such that
B2 = B1

�
a b
0 a

�
: (�)

Similarly, C1E21C�11 = C2E21C
�1
2 if and only if there exist � 2 C� f0g and � 2 C such that

C2 = C1

�
� 0
� �

�
: (��)

Now, MN +NM = I2, M = BE12B
�1 and N = CE21C

�1 give

BE12B
�1CE21C

�1 + CE21C
�1BE12B

�1 = I2;

or
E12B

�1CE21C
�1B +B�1CE21C

�1BE12 = I2:

If B�1C =
�
x y
z t

�
, the previous relation means�

z t
0 0

��
0 0
t �y

�
+

�
y 0
t 0

��
0 t
0 �z

�
= (xt� yz)I2 6= 02:

After computations we �nd this to be equivalent to xt � yz = t2 6= 0. Consequently, there are
y; z 2 C and t 2 C� f0g such that

C = B

�
t+ yz

t y
z t

�
: (� � �)

According to (�) and (��), our problem is equivalent to �nding a; � 2 C � f0g and b; � 2 C

such that C
�
� 0
� �

�
= B

�
a b
0 a

�
. Taking relation (� � �) into account, we need to �nd

a; � 2 C� f0g and b; � 2 C such that

B

�
t+ yz

t y
z t

��
� 0
� �

�
= B

�
a b
0 a

�
;

or, B being invertible, �
t+ yz

t y
z t

��
� 0
� �

�
=

�
a b
0 a

�
:

This means

8>>><>>>:
�t+ �

yz

t
+ �y = a

�y = b
�z + �t = 0
�t = a

;

and these conditions are equivalent to

8<: �y = b
�z = ��t
�t = a

.

It is now enough to choose � = 1, a = t, b = y and � = �z
t
. �
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Third Solution. Let f; g be as in the �rst solution. Since f2 = 0 there exists a nonzero
v1 2Kerf so f(v1) = 0 and setting v2 = g(v1) we get

f(v2) = (fg + gf)(v1) = v1 6= 0
by the assumptions (and so v2 6= 0). Also

g(v2) = g
2(v1) = 0

and so to complete the proof it su¢ ces to show that v1 and v2 are linearly independent, because
then the matrices of f; g with respect to the ordered basis (v1; v2) would be E12 and E21 respec-
tively, according to the above relations. But if v2 = �v1 then 0 = g(v2) = �g(v1) = �v2 so since
v2 6= 0; � must be 0 which gives v2 = 0v1 = 0 contradiction. This completes the proof. �
Remark. A nonelementary solution of this problem can be given by observing that the

conditions on M;N imply that the correspondence I2 ! I2;M ! E12 and N ! E21 extends
to an isomorphism between the subalgebras of M2(C) generated by I2;M;N and I2; E12; E21
respectively, and then one can apply Noether-Skolem Theorem to show that this isomorphism
is actually conjugation by an A 2 Gl2(C) etc.

Problem 3
Find the maximum value of Z 1

0
jf 0(x)j2 jf(x)j 1p

x
dx

over all continuously di¤erentiable functions f : [0; 1]! R with f(0) = 0 andZ 1

0
jf 0(x)j2 dx � 1: (�)

Solution. For x 2 [0; 1] let

g(x) =

Z x

0
jf 0(t)j2 dt:

Then for x 2 [0; 1] the Cauchy-Schwarz inequality gives

jf(x)j �
Z x

0
jf 0(t)j dt �

�Z x

0
jf 0(t)j2 dt

�1=2p
x =

p
xg(x)1=2:

Thus Z 1

0
jf 0(x)j2jf(x)j 1p

x
dx �

Z 1

0
g(x)1=2g0(x)dx =

2

3
[g(1)3=2 � g(0)3=2]

=
2

3

�Z 1

0
jf 0(t)j2 dt

�3=2
� 2

3
:

by (�). The maximum is achieved by the function f(x) = x. �
Remark. If the condition (�) is replaced by

R 1
0 jf

0(x)j pdx � 1 with 0 < p < 2 �xed, then
the given expression would have supremum equal to +1, as it can be seen by considering
continuously di¤erentiable functions that approximate the functions fM (x) = Mx for 0 � x �
1

Mp
and

1

Mp�1 for
1

Mp
< x � 1, where M can be an arbitrary large positive real number.

Problem 4
Let A 2M2(Q) such that there is n 2 N; n 6= 0, with An = �I2. Prove that either A2 = �I2

or A3 = �I2:
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First Solution. Let fA(x) = det(A � xI2) = x2 � sx + p 2 Q[x] be the characteristic
polynomial of A and let �1; �2 be its roots, also known as the eigenvalues of matrix A. We have
that �1 + �2 = s 2 Q and �1�2 = p 2 Q. We know, based on Cayley-Hamilton theorem, that
the matrix A satis�es the relation A2 � sA + pI2 = 02. For any eigenvalue � 2 C there is an
eigenvector X 6= 0, such that AX = �X. By induction we have that AnX = �nX and it follows
that �n = �1. Thus, the eigenvalues of A satisfy the equalities

�n1 = �
n
2 = �1 (�):

Is �1 2 R then we also have that �2 2 R and from (�) we get that �1 = �2 = �1 (and note
that n must be odd) so A satis�es the equation (A + I2)2 = A2 + 2A + I2 = 02 and it follows
that �I2 = An = (A+ I2 � I2)n = n(A+ I2)� I2 which gives A = �I2 and hence A3 = �I2.
If �1 2 C nR then �2 = �1 2 C nR and since �n1 = �1 we get that j�1;2j = 1 and this implies

that �1;2 = cos t � i sin t. Now we have the equalities �1 + �2 = 2 cos t = s 2 Q and �n1 = �1
implies that cosnt + i sinnt = �1 which in turn implies that cosnt = �1. Using the equality
cos(n + 1)t + cos(n � 1)t = 2 cos t cosnt we get that there is a polynomial Pn = xn + � � � of
degree n with integer coe¢ cients such that 2 cosnt = Pn(2 cos t). Set x = 2 cos t and observe
that we have Pn(x) = �2 so x = 2 cos t is a rational root of an equation of the form xn+ � � � = 0.
However, the rational roots of this equation are integers, so x 2 Z and since jxj � 2 we get that
2 cos t = �2;�1; 0; 1; 2.
When 2 cos t = �2 then �1;2 are real numbers (note that in this case �1 = �2 = 1 or

�1 = �2 = �1) and this case was discussed above.
When 2 cos t = 0 we get that A2 + I2 = 02 so A2 = �I2:
When 2 cos t = 1 we get that A2�A+ I2 = 02 which implies that (A+ I2)(A2�A+ I2) = 02

so A3 = �I2.
When 2 cos t = �1 we get that A2+A+I2 = 02 and this implies that (A�I2)(A2+A+I2) = 02

so A3 = I2. It follows that An 2
�
I2; A;A

2
	
. However, An = �I2 and this implies that either

A = �I2 or A2 = �I2 both of which contradict the equality A3 = I2: This completes the
proof. �
Remark. The polynomials Pn used in the above proof are related to the Chebyshev poly-

nomials, Tn(x) = cos(narccosx). One could also get the conclusion that 2 cos t is an integer by
considering the sequence xm = 2 cos(2mt) and noticing that since xm+1 = x2m � 2, if x0 were a

noninteger rational
a

b
(b > 1) in lowest terms then the denominator of xm in lowest terms would

be b2
m
and this contradicts the fact that xm must be periodic since t is a rational multiple of �:

Second Solution. Let mA(x) be the minimal polynomial of A. Since A2n � I2 = (An +
I2)(A

n � I2) = 02, mA(x) must be a divisor of x2n � 1 which has no multiple roots. It is well
known that the monic irreducible over Q factors of x2n�1 are exactly the cyclotomic polynomials
�d(x) where d divides 2n. Hence the irreducible over Q factors of mA(x) must be cyclotomic
polynomials and since the degree of mA(x) is at most 2 we conclude that mA(x) itself must be a
cyclotomic polynomial, say �d(x) for some positive integer d with �(d) = 1 or 2 (where � is the
Euler totient function), �(d) being the degree of �d(x). But this implies that d 2 f1; 2; 3; 4; 6g
and since A;A3 cannot be equal to I2 we get that mA(x) 2 fx+ 1; x2 + 1; x2 � x+ 1g and this
implies that either A2 = �I2 or A3 = �I2. �


