Sixth South Eastern European Mathematical Olympiad for University Students
 Blagoevgrad, Bulgaria
 March 8, 2012

Problem 1. Let $A=\left(a_{i j}\right)$ be the $n \times n$ matrix, where $a_{i j}$ is the remainder of the division of $i^{j}+j^{i}$ by 3 for $i, j=1,2, \ldots, n$. Find the greatest n for which $\operatorname{det} A \neq 0$.

Solution. We show that $a_{i+6, j}=a_{i j}$ for all $i, j=1,2, \ldots, n$. First note that if $j \equiv 0(\bmod 3)$ then $j^{i} \equiv 0(\bmod 3)$, and if $j \equiv 1$ or $2(\bmod 3)$ then $j^{6} \equiv 1(\bmod 3)$. Hence, $j^{i}\left(j^{6}-1\right) \equiv 0(\bmod 3)$ for $j=1,2, \ldots, n$, and

$$
a_{i+6, j} \equiv(i+6)^{j}+j^{i+6} \equiv i^{j}+j^{i} \equiv a_{i j}(\bmod 3),
$$

or $a_{i+6, j}=a_{i j}$. Consequently, $\operatorname{det} A=0$ for $n \geq 7$. By straightforward calculation, we see that $\operatorname{det} A=0$ for $n=6$ but $\operatorname{det} A \neq 0$ for $n=5$, so the answer is $n=5$.

Grading of Problem 1.

5p: Concluding that $\Delta_{n}=0$ for each $n \geq 7$
5p: Computing $\Delta_{5}=12, \Delta_{6}=0$
2p: Computing $\Delta_{3}=-10, \Delta_{4}=4$ (in case none of the above is done)
Problem 2. Let $a_{n}>0, n \geq 1$. Consider the right triangles $\triangle A_{0} A_{1} A_{2}, \triangle A_{0} A_{2} A_{3}, \ldots$, $\triangle A_{0} A_{n-1} A_{n}, \ldots$, as in the figure. (More precisely, for every $n \geq 2$ the hypotenuse $A_{0} A_{n}$ of $\triangle A_{0} A_{n-1} A_{n}$ is a leg of $\triangle A_{0} A_{n} A_{n+1}$ with right angle $\angle A_{0} A_{n} A_{n+1}$, and the vertices A_{n-1} and A_{n+1} lie on the opposite sides of the straight line $A_{0} A_{n}$; also, $\left|A_{n-1} A_{n}\right|=a_{n}$ for every $n \geq 1$.)

Is it possible for the set of points $\left\{A_{n} \mid n \geq 0\right\}$ to be unbounded but the series $\sum_{n=2}^{\infty} m\left(\angle A_{n-1} A_{0} A_{n}\right)$ to be convergent? Here $m(\angle A B C)$ denotes the measure of $\angle A B C$.

Note. A subset B of the plane is bounded if there is a disk D such that $B \subseteq D$.
Solution. We have $\left|A_{0} A_{n}\right|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}$ and $\sum_{n=2}^{k} m\left(\angle A_{n-1} A_{0} A_{n}\right)=\sum_{n=2}^{k} \arctan \frac{a_{n}}{\sqrt{a_{1}^{2}+\cdots+a_{n-1}^{2}}}$. The set of points $\left\{A_{n} \mid n \geq 0\right\}$ will be unbounded if and only if the sequence of the lengths of the segments $A_{0} A_{n}$ is unbounded. Put $a_{i}^{2}=b_{i}$. Then the question can be reformulated as follows: Is it possible for a series with positive terms to be such that $\sum_{i=1}^{\infty} b_{i}=\infty$ and

$$
\sum_{n=2}^{\infty} \arctan \sqrt{\frac{b_{n}}{b_{1}+\cdots+b_{n-1}}}<\infty .
$$

Denote $s_{n}=\sum_{i=1}^{n} b_{i}$. Since $\arctan x \sim x$ as $x \rightarrow 0$, the question we need to ask is whether one can have $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\sum_{n=2}^{\infty} \sqrt{\frac{s_{n}-s_{n-1}}{s_{n-1}}}<\infty$. Put $\sqrt{\frac{s_{n}-s_{n-1}}{s_{n-1}}}=u_{n}>0$. Then $\frac{s_{n}}{s_{n-1}}=1+u_{n}^{2}, \ln s_{n}-\ln s_{n-1}=\ln \left(1+u_{n}^{2}\right), \ln s_{k}=\ln s_{1}+\sum_{n=2}^{k} \ln \left(1+u_{n}^{2}\right)$. Finally, the question is whether it is possible to have $\sum_{n=2}^{\infty} \ln \left(1+u_{n}^{2}\right)=\infty$ and $\sum_{n=2}^{\infty} u_{n}<\infty$. The answer is negative, since $\ln (1+x) \sim x$ as $x \rightarrow 0$ and $u_{n}^{2} \leq u_{n} \leq 1$ for large enough n.
Different solution. Since $\sum_{n=2}^{\infty} m\left(\angle A_{n-1} A_{0} A_{n}\right)<\infty$, there exists some large enough k for which $\sum_{n=k}^{\infty} m\left(\angle A_{n-1} A_{0} A_{n}\right) \leq \beta<\frac{\pi}{2}$. Then all the vertices $A_{n}, n \geq k-1$, lie inside the triangle $\triangle A_{0} A_{k-1} B$, where the side $A_{k-1} B$ of $\triangle A_{0} A_{k-1} B$ is a continuation of the side $A_{k-1} A_{k}$ of $\triangle A_{0} A_{k-1} A_{k}$ and $\angle A_{k-1} A_{0} B=\beta$. Consequently, the set $\left\{A_{n} \mid n \geq 0\right\}$ is bounded which is a contradiction.

Grading of Problem 2.

$\mathbf{1 p}$: Noting that $\left\{A_{n} \mid n \geq 0\right\}$ is unbounded $\Leftrightarrow\left|A_{0} A_{n}\right|$ is unbounded OR expressing $\left|A_{0} A_{n}\right|$
1p: Observing that $\sum_{n=2}^{\infty} m\left(\angle A_{n-1} A_{0} A_{n}\right)$ is convergent $\Leftrightarrow A_{0} A_{n}$ tends to $A_{0} B$ OR expressing the angles by arctan

8 p : Proving the assertion

Problem 3.

a) Prove that if k is an even positive integer and A is a real symmetric $n \times n$ matrix such that $\left(\operatorname{Tr}\left(A^{k}\right)\right)^{k+1}=\left(\operatorname{Tr}\left(A^{k+1}\right)\right)^{k}$, then

$$
A^{n}=\operatorname{Tr}(A) A^{n-1}
$$

b) Does the assertion from a) also hold for odd positive integers k ?

Solution. a) Let $k=2 l, l \geq 1$. Since A is a symmetric matrix all its eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are real numbers. We have,

$$
\begin{equation*}
\operatorname{Tr}\left(A^{2 l}\right)=\lambda_{1}^{2 l}+\lambda_{2}^{2 l}+\cdots+\lambda_{n}^{2 l}=a \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Tr}\left(A^{2 l+1}\right)=\lambda_{1}^{2 l+1}+\lambda_{2}^{2 l+1}+\cdots+\lambda_{n}^{2 l+1}=b . \tag{2}
\end{equation*}
$$

By (1) we get that $a \geq 0$, so there is some $a_{1} \geq 0$ such that $a=a_{1}^{2 l}$. On the other hand, the equality $a^{2 l+1}=b^{2 l}$ implies that $\left(a_{1}^{2 l+1}\right)^{2 l}=b^{2 l}$ and hence

$$
b= \pm a_{1}^{2 l+1}=\left(\pm a_{1}\right)^{2 l+1} \quad \text { and } \quad a=a_{1}^{2 l}=\left(\pm a_{1}\right)^{2 l} .
$$

Then equalities (1) and (2) become

$$
\begin{equation*}
\lambda_{1}^{2 l}+\lambda_{2}^{2 l}+\cdots+\lambda_{n}^{2 l}=c^{2 l} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}^{2 l+1}+\lambda_{2}^{2 l+1}+\cdots+\lambda_{n}^{2 l+1}=c^{2 l+1}, \tag{4}
\end{equation*}
$$

where $c= \pm a_{1}$. We consider the following cases.
Case 1. If $c=0$ then $\lambda_{1}=\cdots=\lambda_{n}=0$, so $\operatorname{Tr}(A)=0$ and we note that the characteristic polynomial of A is $f_{A}(x)=x^{n}$. We have, based on the Cayley-Hamilton Theorem, that

$$
A^{n}=0=\operatorname{Tr}(A) A^{n-1}
$$

Case 2. If $c \neq 0$ then let $x_{i}=\lambda_{i} / c, i=1,2, \ldots, n$. In this case equalities (3) and (4) become

$$
\begin{equation*}
x_{1}^{2 l}+x_{2}^{2 l}+\cdots+x_{n}^{2 l}=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{2 l+1}+x_{2}^{2 l+1}+\cdots+x_{n}^{2 l+1}=1 . \tag{6}
\end{equation*}
$$

The equality (5) implies that $\left|x_{i}\right| \leq 1$ for all $i=1,2, \ldots, n$. We have $x^{2 l} \geq x^{2 l+1}$ for $|x| \leq 1$ with equality reached when $x=0$ or $x=1$. Then, by (5), (6), and the previous observation, we find without loss of generality that $x_{1}=1, x_{2}=x_{3}=\cdots=x_{n}=0$. Hence $\lambda_{1}=c$, $\lambda_{2}=\cdots=\lambda_{n}=0$, and this implies that $f_{A}(x)=x^{n-1}(x-c)$ and $\operatorname{Tr}(A)=c$. It follows, based on the Cayley-Hamilton Theorem, that

$$
f_{A}(A)=A^{n-1}\left(A-c I_{n}\right)=0 \quad \Leftrightarrow \quad A^{n}=\operatorname{Tr}(A) A^{n-1} .
$$

b) The answer to the question is negative. We give the following counterexample:

$$
k=1, \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right) .
$$

Grading of Problem 3.

3p: Reformulating the problem through eigenvalues:

$$
\left(\sum \lambda_{i}^{2 l}\right)^{2 l+1}=\left(\sum \lambda_{i}^{2 l+1}\right)^{2 l} \Rightarrow \forall i: \lambda_{i}^{n}=\left(\lambda_{1}+\cdots+\lambda_{n}\right) \lambda_{i}^{n-1}
$$

$4 \mathbf{p}:$ Only $\left(\lambda_{i}\right)=(0, \ldots, 0, c, 0, \ldots, 0)$ or $(0, \ldots, 0)$ are possible
3p: Finding a counterexample

Problem 4.

a) Compute

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1}\left(\frac{1-x}{1+x}\right)^{n} d x
$$

b) Let $k \geq 1$ be an integer. Compute

$$
\lim _{n \rightarrow \infty} n^{k+1} \int_{0}^{1}\left(\frac{1-x}{1+x}\right)^{n} x^{k} d x
$$

Solution. a) The limit equals $\frac{1}{2}$. The result follows immediately from b) for $k=0$.
b) The limit equals $\frac{k!}{2^{k+1}}$. We have, by the substitution $\frac{1-x}{1+x}=y$, that

$$
\begin{aligned}
n^{k+1} \int_{0}^{1}\left(\frac{1-x}{1+x}\right)^{n} x^{k} d x & =2 n^{k+1} \int_{0}^{1} y^{n}(1-y)^{k} \frac{d y}{(1+y)^{k+2}} \\
& =2 n^{k+1} \int_{0}^{1} y^{n} f(y) d y
\end{aligned}
$$

where

$$
f(y)=\frac{(1-y)^{k}}{(1+y)^{k+2}}
$$

We observe that

$$
\begin{equation*}
f(1)=f^{\prime}(1)=\cdots=f^{(k-1)}(1)=0 . \tag{7}
\end{equation*}
$$

We integrate k times by parts $\int_{0}^{1} y^{n} f(y) d y$, and by (7) we get

$$
\int_{0}^{1} y^{n} f(y) d y=\frac{(-1)^{k}}{(n+1)(n+2) \ldots(n+k)} \int_{0}^{1} y^{n+k} f^{(k)}(y) d y .
$$

One more integration implies that

$$
\begin{aligned}
\int_{0}^{1} y^{n} f(y) d y= & \frac{(-1)^{k}}{(n+1)(n+2) \ldots(n+k)(n+k+1)} \\
& \times\left(\left.f^{(k)}(y) y^{n+k+1}\right|_{0} ^{1}-\int_{0}^{1} y^{n+k+1} f^{(k+1)}(y) d y\right) \\
= & \frac{(-1)^{k} f^{(k)}(1)}{(n+1)(n+2) \ldots(n+k+1)} \\
& +\frac{(-1)^{k+1}}{(n+1)(n+2) \ldots(n+k+1)} \int_{0}^{1} y^{n+k+1} f^{(k+1)}(y) d y
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty} 2 n^{k+1} \int_{0}^{1} y^{n} f(y) d y=2(-1)^{k} f^{(k)}(1)
$$

since

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} y^{n+k+1} f^{(k+1)}(y) d y=0
$$

$f^{(k+1)}$ being continuous and hence bounded. Using Leibniz's formula we get that

$$
f^{(k)}(1)=(-1)^{k} \frac{k!}{2^{k+2}}
$$

and the problem is solved.

Grading of Problem 4.

3p: For computing a)
7p: For computing b)

