Bucharest, March 4th, 2011

SOUTH EASTERN EUROPEAN MATHEMATICAL OLYMPIAD FOR UNIVERSITY STUDENTS

PROBLEMS

Problem 1 For a given integer $n \geq 1$, let $f:[0,1] \rightarrow \mathbb{R}$ be a non-decreasing function. Prove that

$$
\int_{0}^{1} f(x) \mathrm{d} x \leq(n+1) \int_{0}^{1} x^{n} f(x) \mathrm{d} x .
$$

Find all non-decreasing continuous functions for which equality holds.

Problem 2 Let $A=\left(a_{i j}\right)$ be a real $n \times n$ matrix such that $A^{n} \neq 0$ and $a_{i j} a_{j i} \leq 0$ for all i, j. Prove that there exist two nonreal numbers among eigenvalues of A.

Problem 3 Given vectors $\bar{a}, \bar{b}, \bar{c} \in \mathbb{R}^{n}$, show that

$$
(\|\bar{a}\|\langle\bar{b}, \bar{c}\rangle)^{2}+(\|\bar{b}\|\langle\bar{a}, \bar{c}\rangle)^{2} \leq\|\bar{a}\|\|\bar{b}\|(\|\bar{b}\|\|\bar{b}\|+|\langle\bar{a}, \bar{b}\rangle|)\|\bar{c}\|^{2},
$$

where $\langle\bar{x}, \bar{y}\rangle$ denotes the scalar (inner) product of the vectors \bar{x} and \bar{y} and $\|\bar{x}\|^{2}=\langle\bar{x}, \bar{x}\rangle$.

Problem 4 Let $f:[0,1] \rightarrow \mathbb{R}$ be a twice continuously differentiable increasing function. Define the sequences given by $L_{n}=\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$ and $U_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right), n \geq 1$. The interval $\left[L_{n}, U_{n}\right]$ is divided into three equal segments. Prove that, for large enough n, the number $I=\int_{0}^{1} f(x) \mathrm{d} x$ belongs to the middle one of these three segments.

