## SEEMOUS 2009

South Eastern European Mathematical Olympiad for University Students
AGROS, March 6, 2009

## COMPETITION PROBLEMS

## Problem 1

a) Calculate the limit

$$
\lim _{n \rightarrow \infty} \frac{(2 n+1)!}{(n!)^{2}} \int_{0}^{1}(x(1-x))^{n} x^{k} d x
$$

where $k \in \mathbb{N}$.
b) Calculate the limit

$$
\lim _{n \rightarrow \infty} \frac{(2 n+1)!}{(n!)^{2}} \int_{0}^{1}(x(1-x))^{n} f(x) d x
$$

where $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function.
Solution Answer: $f\left(\frac{1}{2}\right)$. Proof: Set

$$
L_{n}(f)=\frac{(2 n+1)!}{(n!)^{2}} \int_{0}^{1}(x(1-x))^{n} f(x) d x
$$

A straightforward calculation (integrating by parts) shows that

$$
\int_{0}^{1}(x(1-x))^{n} x^{k} d x=\frac{(n+k)!n!}{(2 n+k+1)!} .
$$

Thus, $\quad \int_{0}^{1}(x(1-x))^{n} d x=\frac{(n!)^{2}}{(2 n+1)!}$ and desired limit is equal to $\lim _{n \rightarrow \infty} L_{n}(f)$. Next,

$$
\lim _{n \rightarrow \infty} L_{n}\left(x^{k}\right)=\lim _{n \rightarrow \infty} \frac{(n+1)(n+2) \ldots(n+k)}{(2 n+2)(2 n+3) \ldots(2 n+k+1)}=\frac{1}{2^{k}} .
$$

According to linearity of the integral and of the limit, $\lim _{n \rightarrow \infty} L_{n}(P)=P\left(\frac{1}{2}\right)$ for every polynomial $P(x)$.

Finally, fix an arbitrary $\varepsilon>0$. A polynomial $P$ can be chosen such that $|f(x)-P(x)|<\varepsilon$ for every $x \in[0,1]$. Then

$$
\left|L_{n}(f)-L_{n}(P)\right| \leq L_{n}(|f-P|)<L_{n}(\varepsilon \cdot \mathbb{I})=\varepsilon, \text { where } \mathbb{I}(x)=1, \text { for every } x \in[0,1] .
$$

There exists $n_{0}$ such that $\left|L_{n}(P)-P\left(\frac{1}{2}\right)\right|<\varepsilon$ for $n \geq n_{0}$. For these integers

$$
\left|L_{n}(f)-f\left(\frac{1}{2}\right)\right| \leq\left|L_{n}(f)-L_{n}(P)\right|+\left|L_{n}(P)-P\left(\frac{1}{2}\right)\right|+\left|f\left(\frac{1}{2}\right)-P\left(\frac{1}{2}\right)\right|<3 \varepsilon,
$$

which concludes the proof.

## Problem 2

Let $P$ be a real polynomial of degree five. Assume that the graph of $P$ has three inflection points lying on a straight line. Calculate the ratios of the areas of the bounded regions between this line and the graph of the polynomial $P$.

Solution Denote the inflection points by $A, B$, and $C$. Let $l: y=k x+n$ be the equation of the line that passes through them. If $B$ has coordinates $\left(x_{0}, y_{0}\right)$, the affine change

$$
x^{\prime}=x-x_{0}, \quad y^{\prime}=k x-y+n
$$

transforms $l$ into the $x$-axis, and the point $B$-into the origin. Then without loss of generality it is sufficient to consider a fifth-degree polynomial $f(x)$ with points of inflection $(b, 0),(0,0)$ and ( $a, 0$ ), with $b<0<a$. Obviously $f^{\prime \prime}(x)=k x(x-a)(x-b)$, hence

$$
f(x)=\frac{k}{20} x^{5}-\frac{k(a+b)}{12} x^{4}+\frac{k a b}{6} x^{3}+c x+d .
$$

By substituting the coordinates of the inflection points, we find $d=0, a+b=0$ and $c=\frac{7 k a^{4}}{60}$ and therefore

$$
f(x)=\frac{k}{20} x^{5}-\frac{k a^{2}}{6} x^{3}+\frac{7 k a^{4}}{60} x=\frac{k}{60} x\left(x^{2}-a^{2}\right)\left(3 x^{2}-7 a^{2}\right) .
$$

Since $f(x)$ turned out to be an odd function, the figures bounded by its graph and the $x$-axis are pairwise equiareal. Two of the figures with unequal areas are

$$
\Omega_{1}: 0 \leq x \leq a, 0 \leq y \leq f(x) ; \quad \Omega_{2}: a \leq x \leq a \sqrt{\frac{7}{3}}, f(x) \leq y \leq 0
$$

We find

$$
\begin{gathered}
S_{1}=S\left(\Omega_{1}\right)=\int_{0}^{a} f(x) d x=\frac{k a^{6}}{40}, \\
S_{2}=S\left(\Omega_{2}\right)=-\int_{a}^{a \sqrt{\frac{7}{3}}} f(x) d x=\frac{4 k a^{6}}{405}
\end{gathered}
$$

and conclude that $S_{1}: S_{2}=81: 32$.

## Problem 3

Let $\mathrm{SL}_{2}(\mathbb{Z})=\{A \mid A$ is a $2 \times 2$ matrix with integer entries and $\operatorname{det} A=1\}$.
a) Find an example of matrices $A, B, C \in \mathbf{S L}_{2}(\mathbb{Z})$ such that $A^{2}+B^{2}=C^{2}$.
b) Show that there do not exist matrices $A, B, C \in \mathbf{S L}_{2}(\mathbb{Z})$ such that $A^{4}+B^{4}=C^{4}$.

Solution a) Yes. Example:

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

b) No. Let us recall that every $2 \times 2$ matrix $A$ satisfies $A^{2}-(\operatorname{tr} A) A+(\operatorname{det} A) E=0$ where $\operatorname{tr} A=a_{11}+a_{22}$.

Suppose that $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathbf{S L}_{2}(\mathbb{Z})$ and $A^{4}+B^{4}=C^{4}$. Let $a=\operatorname{tr} A, b=\operatorname{tr} B, c=\operatorname{tr} C$. Then $A^{4}=(a A-E)^{2}=a^{2} A^{2}-2 a A+E=\left(a^{3}-2 a\right) A+\left(1-a^{2}\right) E$ and, after same expressions for $B^{4}$ and $C^{4}$ have been substituted,

$$
\left(a^{3}-2 a\right) A+\left(b^{3}-2 b\right) B+\left(2-a^{2}-b^{2}\right) E=\left(c^{3}-2 c\right) C+\left(1-c^{2}\right) E .
$$

Calculating traces of both sides we obtain $a^{4}+b^{4}-4\left(a^{2}+b^{2}\right)=c^{4}-4 c^{2}-2$, so $a^{4}+b^{4}-c^{4} \equiv-2(\bmod 4)$. Since for every integer $k: k^{4} \equiv 0(\bmod 4)$ or $k^{4} \equiv 1(\bmod 4)$, then $a$ and $b$ are odd and $c$ is even. But then $a^{4}+b^{4}-4\left(a^{2}+b^{2}\right) \equiv 2(\bmod 8)$ and $c^{4}-4 c^{2}-2 \equiv-2(\bmod 8)$ which is a contradiction.

## Problem 4

Given the real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ we define the $n \times n$ matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ by

$$
a_{i j}=a_{i}-b_{j} \quad \text { and } \quad b_{i j}=\left\{\begin{array}{ll}
1, & \text { if } a_{i j} \geq 0, \\
0, & \text { if } a_{i j}<0,
\end{array} \quad \text { for all } i, j \in\{1,2, \ldots, n\} .\right.
$$

Consider $C=\left(c_{i j}\right)$ a matrix of the same order with elements 0 and 1 such that

$$
\sum_{j=1}^{n} b_{i j}=\sum_{j=1}^{n} c_{i j}, \quad i \in\{1,2, \ldots, n\} \text { and } \sum_{i=1}^{n} b_{i j}=\sum_{i=1}^{n} c_{i j}, \quad j \in\{1,2, \ldots, n\} .
$$

Show that:
a)

$$
\sum_{i, j=1}^{n} a_{i j}\left(b_{i j}-c_{i j}\right)=0 \text { and } B=C .
$$

b) $B$ is invertible if and only if there exists two permutations $\sigma$ and $\tau$ of the set $\{1,2, \ldots, n\}$ such that

$$
b_{\tau(1)} \leq a_{\sigma(1)}<b_{\tau(2)} \leq a_{\sigma(2)}<\cdots \leq a_{\sigma(n-1)}<b_{\tau(n)} \leq a_{\sigma(n)} .
$$

## Solution

(a) We have that

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}\left(b_{i j}-c_{i j}\right)=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n} b_{i j}-\sum_{j=1}^{n} c_{i j}\right)-\sum_{j=1}^{n} b_{j}\left(\sum_{i=1}^{n} b_{i j}-\sum_{i=1}^{n} c_{i j}\right)=0 . \tag{1}
\end{equation*}
$$

We study the sign of $a_{i j}\left(b_{i j}-c_{i j}\right)$.
If $a_{i} \geq b_{j}$, then $a_{i j} \geq 0, b_{i j}=1$ and $c_{i j} \in\{0,1\}$, hence $a_{i j}\left(b_{i j}-c_{i j}\right) \geq 0$.
If $a_{i}<b_{j}$, then $a_{i j}<0, b_{i j}=0$ and $c_{i j} \in\{0,1\}$, hence $a_{i j}\left(b_{i j}-c_{i j}\right) \geq 0$.
Using (1), the conclusion is that

$$
\begin{equation*}
a_{i j}\left(b_{i j}-c_{i j}\right)=0, \quad \text { for all } i, j \in\{1,2, \ldots, n\} . \tag{2}
\end{equation*}
$$

If $a_{i j} \neq 0$, then $b_{i j}=c_{i j}$. If $a_{i j}=0$, then $b_{i j}=1 \geq c_{i j}$. Hence, $b_{i j} \geq c_{i j}$ for all $i, j \in$ $\{1,2, \ldots, n\}$ and since $\sum_{i, j=1}^{n} b_{i j}=\sum_{i, j=1}^{n} c_{i j}$ the final conclusion is that

$$
b_{i j}=c_{i j}, \quad \text { for all } i, j \in\{1,2, \ldots, n\} .
$$

(b) We may assume that $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ since any permutation of $a_{1}, a_{2}, \ldots, a_{n}$ permutes the lines of $B$ and any permutation of $b_{1}, b_{2}, \ldots, b_{n}$ permutes the columns of $B$, which does not change whether $B$ is invertible or not.

- If there exists $i$ such that $a_{i}=a_{i+1}$, then the lines $i$ and $i+1$ in $B$ are equal, so $B$ is not invertible. In the same way, if there exists $j$ such $b_{j}=b_{j+1}$, then the columns $j$ and $j+1$ are equal, so $B$ is not invertible.
- If there exists $i$ such that there is no $b_{j}$ with $a_{i}<b_{j} \leq a_{i+1}$, then the lines $i$ and $i+1$ in $B$ are equal, so $B$ is not invertible. In the same way, if there exists $j$ such that there is no $a_{i}$ with $b_{j} \leq a_{i}<b_{j+1}$, then the columns $j$ and $j+1$ are equal, so $B$ is not invertible.
- If $a_{1}<b_{1}$, then $a_{1}<b_{j}$ for any $j \in\{1,2, \ldots, n\}$, which means that the first line of $B$ has only zero elements, hence $B$ is not invertible.

Therefore, if $B$ is invertible, then $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ separate each other

$$
\begin{equation*}
b_{1} \leq a_{1}<b_{2} \leq a_{2}<\ldots \leq a_{n-1}<b_{n} \leq a_{n} . \tag{3}
\end{equation*}
$$

It is easy to check that if (3), then

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
1 & 1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

which is, obviously, invertible.
Concluding, $B$ is invertible if and only if there exists a permutation $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}$ of $a_{1}, a_{2}, \ldots, a_{n}$ and a permutation $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{n}}$ of $b_{1}, b_{2}, \ldots, b_{n}$ such that

$$
b_{j_{1}} \leq a_{i_{1}}<b_{j_{2}} \leq a_{i_{2}}<\ldots \leq a_{i_{n-1}}<b_{j_{n}} \leq a_{i_{n}} .
$$

