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Problem 1

Let f : [1,∞) → (0,∞) be a continuous function. Assume that for every a > 0, the
equation f(x) = ax has at least one solution in the interval [1,∞).

(a) Prove that for every a > 0, the equation f(x) = ax has infinitely many solutions.
(b) Give an example of a strictly increasing continuous function f with these prop-

erties.

Problem 2

Let P0, P1, P2, . . . be a sequence of convex polygons such that, for each k ≥ 0, the vertices
of Pk+1 are the midpoints of all sides of Pk. Prove that there exists a unique point lying
inside all these polygons.

Problem 3

Let Mn(R) denote the set of all real n × n matrices. Find all surjective functions f :
Mn(R) → {0, 1, . . . , n} which satisfy

f(XY ) ≤ min{f(X), f(Y )}

for all X,Y ∈Mn(R).

Problem 4

Let n be a positive integer and f : [0, 1] → R be a continuous function such that

∫ 1

0
xkf(x) dx = 1

for every k ∈ {0, 1, . . . , n− 1}. Prove that

∫ 1

0
(f(x))2 dx ≥ n2.
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Answers

Problem 1

Solution. (a) Suppose that one can find constants a > 0 and b > 0 such that f(x) 6= ax
for all x ∈ [b,∞). Since f is continuous we obtain two possible cases:

1.) f(x) > ax for x ∈ [b,∞). Define

c = min
x∈[1,b]

f(x)
x

=
f(x0)

x0
.

Then, for every x ∈ [1,∞) one should have

f(x) >
min(a, c)

2
x,

a contradiction.
2.) f(x) < ax for x ∈ [b,∞). Define

C = max
x∈[1,b]

f(x)
x

=
f(x0)

x0
.

Then,
f(x) < 2max(a,C)x

for every x ∈ [1,∞) and this is again a contradiction.

(b) Choose a sequence 1 = x1 < x2 < · · · < xk < · · · such that the sequence
yk = 2k cos kπxk is also increasing. Next define f(xk) = yk and extend f linearly on
each interval [xk−1, xk]: f(x) = akx + bk for suitable ak, bk. In this way we obtain an
increasing continuous function f , for which lim

n→∞
f(x2n)

x2n
= ∞ and lim

n→∞
f(x2n−1)

x2n−1
= 0. It

now follows that the continuous function f(x)
x takes every positive value on [1,∞).

Problem 2

Solution. For each k ≥ 0 we denote by Ak
i = (xk

i , y
k
i ), i = 1, . . . , n the vertices of Pk.

We may assume that the center of gravity of P0 is O = (0, 0); in other words,

1
n

(x0
1 + · · ·+ x0

n) = 0 and
1
n

(y0
1 + · · ·+ y0

n) = 0.

Since 2xk+1
i = xk

i + xk
i+1 and 2yk+1

i = yk
i + yk

i+1 for all k and i (we agree that xk
n+j = xk

j

and yk
n+j = yk

j ) we see that

1
n

(xk
1 + · · ·+ xk

n) = 0 and
1
n

(yk
1 + · · ·+ yk

n) = 0

for all k ≥ 0. This shows that O = (0, 0) is the center of gravity of all polygons Pk.
In order to prove that O is the unique common point of all Pk’s it is enough to prove

the following claim:
Claim. Let Rk be the radius of the smallest ball which is centered at O and contains Pk.
Then, lim

k→∞
Rk = 0.
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Proof of the Claim. Write ‖ · ‖2 for the Euclidean distance to the origin O. One can
easily check that there exist β1, . . . , βn > 0 and β1 + · · ·+ βn = 1 such that

Ak+n
j =

n∑

i=1

βiA
k
j+i−1

for all k and j. Let λ = min
i=1,...,n

βi. Since O =
∑n

i=1 Ak
j+i−1, we have the following:

‖Ak+n
j ‖2 =

∥∥∥∥∥
n∑

i=1

(βi − λ)Ak
j+i−1

∥∥∥∥∥
2

≤
n∑

i=1

(βi − λ)‖Ak
j+i−1‖2

≤ Rk

n∑

i=1

(βi − λ) = Rk(1− nλ).

This means that Pk+n lies in the ball of radius Rk(1− nλ) centered at O. Observe that
1− nλ < 1.

Continuing in the same way we see that Pmn lies in the ball of radius R0(1 − nλ)m

centered at O. Therefore, Rmn → 0. Since {Rn} is decreasing, the proof is complete.

Problem 3

Solution. We will show that the only such function is f(X) = rank(X). Setting
Y = In we find that f(X) ≤ f(In) for all X ∈ Mn(R). Setting Y = X−1 we find
that f(In) ≤ f(X) for all invertible X ∈ Mn(R). From these facts we conclude that
f(X) = f(In) for all X ∈ GLn(R).

For X ∈ GLn(R) and Y ∈Mn(R) we have

f(Y ) = f(X−1XY ) ≤ f(XY ) ≤ f(Y ),
f(Y ) = f(Y XX−1) ≤ f(Y X) ≤ f(Y ).

Hence we have f(XY ) = f(Y X) = f(Y ) for all X ∈ GLn(R) and Y ∈ Mn(R). For
k = 0, 1, . . . , n, let

Jk =
(

Ik O
O O

)
.

It is well known that every matrix Y ∈ Mn(R) is equivalent to Jk for k = rank(Y ).
This means that there exist matrices X, Z ∈ GLn(R) such that Y = XJkZ. From
the discussion above it follows that f(Y ) = f(Jk). Thus it suffices to determine the
values of the function f on the matrices J0, J1, . . . , Jn. Since Jk = Jk · Jk+1 we have
f(Jk) ≤ f(Jk+1) for 0 ≤ k ≤ n − 1. Surjectivity of f imples that f(Jk) = k for
k = 0, 1, . . . , n and hence f(Y ) = rank(Y ) for all Y ∈Mn(R).

Problem 4

Solution. There exists a polynomial p(x) = a1 + a2x + · · ·+ anxn−1 which satisfies

(1)
∫ 1

0
xkp(x) dx = 1 for all k = 0, 1, . . . , n− 1.
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It follows that, for all k = 0, 1, . . . , n− 1,

∫ 1

0
xk(f(x)− p(x)) dx = 0,

and hence ∫ 1

0
p(x)(f(x)− p(x)) dx = 0.

Then, we can write
∫ 1

0
(f(x)− p(x))2dx =

∫ 1

0
f(x)(f(x)− p(x)) dx

=
∫ 1

0
f2(x) dx−

n−1∑

k=0

ak+1

∫ 1

0
xkf(x) dx,

and since the first integral is non-negative we get
∫ 1

0
f2(x) dx ≥ a1 + a2 + · · ·+ an.

To complete the proof we show the following:

Claim. For the coefficients a1, . . . , an of p we have

a1 + a2 + · · ·+ an = n2.

Proof of the Claim. The defining property of p can be written in the form

a1

k + 1
+

a2

k + 2
+ · · ·+ an

k + n
= 1, 0 ≤ k ≤ n− 1.

Equivalently, the function

r(x) =
a1

x + 1
+

a2

x + 2
+ · · ·+ an

x + n
− 1

has 0, 1, . . . , n− 1 as zeros. We write r in the form

r(x) =
q(x)− (x + 1)(x + 2) · · · (x + n)

(x + 1)(x + 2) · · · (x + n)
,

where q is a polynomial of degree n − 1. Observe that the coefficient of xn−1 in q is
equal to a1 + a2 + · · · + an. Also, the numerator has 0, 1, . . . , n − 1 as zeros, and since
lim

x→∞ r(x) = −1 we must have

q(x) = (x + 1)(x + 2) · · · (x + n)− x(x− 1) · · · (x− (n− 1)).

This expression for q shows that the coefficient of xn−1 in q is n(n+1)
2 + (n−1)n

2 . It follows
that

a1 + a2 + · · ·+ an = n2.
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