SEEMOUS	SEEMOUS 2007
South Eastern European	
Mathematical Olympiad for	
University Students	
Agros, Cyprus	
7-12 March 2007	

COMPETITION PROBLEMS

9 March 2007
Do all problems 1-4. Each problem is worth 10 points. All answers should be answered in the booklet provided, based on the rules written in the Olympiad programme. Time duration: 9.00 - 14.00

PROBLEM 1

Given $\mathrm{a} \in(0,1) \cap \square$ let $\mathrm{a}=0, \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots$ be its decimal representation. Define

$$
f_{a}(x)=\sum_{n=1}^{\infty} a_{n} x^{n}, x \in(0,1) .
$$

Prove that f_{a} is a rational function of the form $f_{a}(x)=\frac{P(x)}{Q(x)}$, where P and Q are polynomials with integer coefficients.
Conversely, if $a_{k} \in\{0,1,2, \ldots, 9\}$ for all $k \in \square$, and $f_{a}(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ for $x \in(0,1)$ is a rational function of the form $f_{a}(x)=\frac{P(x)}{Q(x)}$, where P and Q are polynomials with integer coefficients, prove that the number $a=0, a_{1} a_{2} a_{3} \ldots$ is rational.

PROBLEM 2

Let $f(x)=\underbrace{\max }_{i}\left|x_{i}\right|$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top} \in \square^{n}$ and let A be an $n x n$ matrix such that $f(A x)=f(x)$ for all $x \in \square^{n}$. Prove that there exists a positive integer m such that A^{m} is the identity matrix I_{n}.

PROBLEM 3

Let F be a field and let $P: F \times F \rightarrow F$ be a function such that for every $x_{0} \in F$ the function $P\left(x_{0}, y\right)$ is a polynomial in y and for every $y_{0} \in F$ the function $P\left(x, y_{0}\right)$ is a polynomial in x.
Is it true that P is necessarily a polynomial in x and y, when
a) $F=\square$, the field of rational numbers?
b) F is a finite field?

Prove your claims.

PROBLEM 4

For $x \in \square, y \geq 0$ and $n \in \square$ denote by $w_{n}(x, y) \in[0, \pi)$ the angle in radians with which the segment joining the point $(n, 0)$ to the point $(n+y, 0)$ is seen from the point $(x, 1) \in \square^{2}$.
a) Show that for every $x \in \square$ and $y \geq 0$, the series $\sum_{n=-\infty}^{\infty} w_{n}(x, y)$ converges.

If we now set $w(x, y)=\sum_{n=-\infty}^{\infty} w_{n}(x, y)$, show that $w(x, y) \leq([y]+1) \pi$.
([y] is the integer part of y)
b) Prove that for every $\varepsilon>0$ there exists $\delta>0$ such that for every y with $0<y<\delta$ and every $x \in \square$ we have $w(x, y)<\varepsilon$.
c) Prove that the function $\mathrm{w}: \square \times[0,+\infty) \rightarrow[0,+\infty)$ defined in (a) is continuous.

